Prediction of Antibiotic Interactions Using Descriptors Derived from Molecular Structure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR Modeling Using Chirality Descriptors Derived from Molecular Topology

Topological descriptors of chemical structures (such as molecular connectivity indices) are widely used in Quantitative Structure-Activity Relationships (QSAR) studies. Unfortunately, these descriptors lack the ability to discriminate between stereoisomers, which limits their application in QSAR. To circumvent this problem, we recently introduced chirality descriptors derived from molecular gra...

متن کامل

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

Prediction and Dissection of Protein-RNA Interactions by Molecular Descriptors.

Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the interactions and binding sites between protein and RNA by traditional experiments is still time consuming and labor costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and binding sites. Accurate prediction of protein-RNA interactions and ...

متن کامل

Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure.

In this paper, a novel approach is described for the a priori prediction of protein retention in ion exchange systems. Quantitative structure retention relationship (QSRR) models based on a genetic algorithm/partial least squares approach were developed using experimental chromatographic data in concert with molecular descriptors computed using protein crystal structures. The resulting QSRR mod...

متن کامل

QSPR Prediction of Vapor Pressure from Solely Theoretically-Derived Descriptors

To date, most reported quantitative structure-property relationship (QSPR) methods to predict vapor pressure rely on, at least, some empirical data, such as boiling points, critical pressures, and critical temperatures. This limits their usefulness to available chemicals and incurs the time and expense of experimentation. A model to predict vapor pressure from only computationally derived molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Medicinal Chemistry

سال: 2017

ISSN: 0022-2623,1520-4804

DOI: 10.1021/acs.jmedchem.7b00204